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Abstract 
 
In randomized controlled trials (RCTs) where the outcome is a student-level, study-collected test score, a particularly valuable piece 
of information is a study-collected baseline score from the same or similar test (a pre-test). Pre-test scores can be used to increase the 
precision of impact estimates, conduct subgroup analysis, and reduce bias from missing data at follow up. Although administering 
baseline tests provides analytic benefits, there may be less expensive ways to achieve some of the same benefits, such as using 
publically available school-level proficiency data. This paper compares the precision gains from adjusting impact estimates for 
student-level pre-test scores (which can be costly to collect) with the gains associated with using publically available school-level 
proficiency data (available at low cost), using data from five large-scale RCTs conducted for the Institute of Education Sciences.  
The study finds that, on average, adjusting for school-level proficiency does not increase statistical precision as well as student-level 
baseline test scores. Across the cases we examined, the number of schools included in studies would have to nearly double in order to 
compensate for the loss in precision of using school-level proficiency data instead of student-level baseline test data. 
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Foreword 
 
The National Center for Education Evaluation and Regional Assistance (NCEE) conducts unbiased large-
scale evaluations of education programs and practices supported by federal funds; provides research-
based technical assistance to educators and policymakers; and supports the synthesis and the widespread 
dissemination of the results of research and evaluation throughout the United States.  
 
In support of this mission, NCEE promotes methodological advancement in the field of education 
evaluation through investigations involving analyses using existing data sets and explorations of 
applications of new technical methods, including cost-effectiveness of alternative evaluation strategies. 
The results of these methodological investigations are published as commissioned, peer reviewed papers, 
under the series title, Technical Methods Reports, posted on the NCEE website at 
http://ies.ed.gov/ncee/pubs/. These reports are specifically designed for use by researchers, 
methodologists, and evaluation specialists. The reports address current methodological questions and 
offer guidance to resolving or advancing the application of high-quality evaluation methods in varying 
educational contexts.  
 
This NCEE Technical Methods paper compares the precision gains from adjusting for a study-collected 
pre-test score (which can be costly to collect) with the gains associated with publically available school 
proficiency data (available at low cost from extant sources), using data from five large-scale RCTs 
conducted by Mathematica Policy Research for the Institute of Education Sciences (IES). The study finds 
that, on average, adjusting for school-level proficiency does not increase statistical precision as well as 
study-collected baseline test scores. Across the cases examined, the number of schools included in studies 
would have to nearly double in order to compensate for the loss in precision of using proficiency data 
instead of study-collected baseline test data.
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Chapter 1:  Introduction 
Over the past 10 years, evaluators of educational programs have increasingly used randomized controlled 
trials (RCTs) to estimate causal relationships between interventions in education and student outcomes, 
particularly in the federal studies funded by the Institute of Education Sciences (IES). In education studies 
where the outcome is a student-level, study-collected test score, a particularly valuable piece of 
information is a study-collected baseline score from the same test (a pre-test). Pre-test scores can be used 
to increase the precision of impact estimates, which in turn reduces the cost of a study by enabling 
researchers to detect effects of a similar size with smaller sample sizes. Pre-tests can also be used to 
conduct subgroup analysis to understand how impacts vary by student achievement level, and to reduce 
bias from missing data at follow up, either through regression adjustment or imputation of missing data. 
See James-Burdumy et al. (2009) for an example of how study-collected baseline test scores can be used 
in these ways. In addition, the presence of study staff in schools at the beginning of the year provides 
opportunities to learn about school-specific issues that might affect the study in unanticipated ways.  

Although administering baseline tests reduces study costs and provides analytic benefits, there may be 
less expensive ways to achieve some of the same benefits. One way might be to rely on district-
administered tests for all the students in the study. In districts that provide easy access to student-level test 
data, this could be a cost-effective alternative. However, experience on large nationwide studies 
conducted for IES has shown that there is considerable variation in the accessibility of school-district data 
and the willingness of school districts to cooperate with data-collection efforts. Since school districts are 
included in evaluations based on whether they meet study eligibility requirements (for example, a 
willingness to implement an intervention and allow random assignment) and not on the accessibility of 
their data, researchers conducting these studies often find that collecting test score data from school 
districts can be challenging.  

An even less expensive alternative to baseline test administration that does not require researchers to 
request data from local districts is to use publically available school-level proficiency data. The State 
Education Data Center (SEDC), by way of the schooldatadirect.org website, provides a central data 
source for school-level proficiency data covering all school districts in the United States for which data 
are available. If the school-level proficiency data from this single, centralized source were nearly as 
effective at increasing the statistical precision of experimental impacts it could lead to significant cost 
reduction in studies conducted for IES.  

This paper compares how publically available school-level proficiency data from SEDC perform relative 
to study-collected pre-test data in terms of improving the precision of impacts in RCTs in which schools 
(rather than students) are randomly assigned to treatment and control groups and a study-collected post-
test score is the outcome of interest.1 Prior research has demonstrated the large precision gains that are 
possible in these RCTs from covariate adjustment for pre-tests, particularly at the school level 
(Raudenbusch 1997; Hedges and Hedberg 2007; Bloom et al. 2007; Schochet 2008a). In fact, Bloom et 
al. (2007) find that “the precision-enhancing power of pretests declines only slightly as the number of 
years between the pretest and posttests increases; improves only slightly with pretests for more than one 
baseline year; and is substantial even when the pretest differs from the posttest,” all of which suggest that 
proficiency data (which is from a different test and often an earlier year) might perform well. The unique 
contribution of this paper is to compare the precision gains from adjusting for a study-collected pre-test 
score (which can be costly to collect) with the gains associated with publically available school 
proficiency data (available at low cost from extant sources). This study is strictly empirical and does not 

                                                      
1 For the purposes of this paper, we assume that the outcome of interest is a student-level study-collected post-test 
score, as opposed to a school-level proficiency measure. However, this may not always be the case. See Perez-
Johnson et al. (2009) for a discussion of considerations for choosing appropriate outcomes in an educational RCT.  
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attempt to provide a conceptual model for the precision gains associated with different types of pre-test 
variables. This paper focuses primarily on elementary schools. This paper does not address the approach 
of collecting student-level data from school districts.  

We compare the precision gains from using school proficiency data to the gains from using study-
collected pre-test data based on data from five large-scale RCTs conducted by Mathematica Policy 
Research for the Institute of Education Sciences (IES), many of which included multiple post-tests and 
pre-tests. Specifically, we examine the average precision loss from adjusting for school proficiency data 
instead of using pre-test data and the risks for an individual study of experiencing a much larger precision 
loss when using proficiency data. We also express this loss in terms of the number of schools that a study 
would need to add in order to make up for the loss in precision associated with using school proficiency 
data instead of study-collected pre-test data.  

If school-level proficiency data are an acceptable alternative to study-collected data for the purpose of 
improving statistical precision, it might still be necessary for studies to collect student-level data in order 
to adjust for non-response bias. To investigate whether non-response bias is a serious concern for IES-
funded studies, we assess the extent to which different types of attrition bias appear to exist in past 
education RCTs. 

The paper is organized as follows. In Chapter 2 we discuss the parameters of interest in this study. In 
Chapter 3 we describe our data sources. In Chapter 4 we compare the precision gains associated with 
study-collected student test score data to the gains associated with school-level proficiency data. In 
Chapter 5 we discuss additional analyses intended to better understand the findings of Chapter 4 and 
explore alternative approaches to reducing the costs of collecting baseline test scores. In Chapter 6 we 
examine the potential implications for attrition bias of not collecting pre-test data (since pre-test data are 
often used in imputation or regression adjustment strategies intended to reduce attrition bias). Chapter 7 
concludes.  



Minimum Detectable Effects in Clustered Randomized Controlled Trials  3 

Chapter 2:  Minimum Detectable Effects in Clustered Randomized 
Controlled Trials 
In this chapter we define the key parameters that we estimate in this paper and describe how we estimate 
them. The key parameters are the (1) intraclass correlation coefficient (ICC), (2) student-level and school-
level R2 values, and (3) minimum detectable effect (MDE). 

We use a super-population framework for thinking about the distribution of impacts. We assume that 
treatment schools are sampled from a normally distributed population with mean mT  and variance σ 2

B  
and that control schools are sampled from a normally distributed population with mean mC  and variance 

σ 2
B . Within schools, we assume that students are sampled from a normally distributed population with a 

school-specific mean of ys  and a variance of σ 2
W . The impact is the difference between the mean 

outcome in the treatment group and the mean outcome in the control group. We assume that each school 
has the same number of students and that equally sized samples are drawn from each school. The number 
of schools in the treatment and control groups is allowed to differ.  

For a variable that is observed for a population of students clustered within schools, the ICC is the 
proportion of the total variance that is due to variation between schools. Following the notation in Hedges 
and Hedberg (2007), if the total variance of the post-test score can be decomposed into within (student-
level) and between (school-level) terms σ σ2 2

T B= +σ 2
W , then the ICC is simply ρ = σ σ2 2

B T/ . In this 

paper we estimate the terms σ 2  (school-level variance) and 2
B σW  (student-level variance) using the linear 

mixed effects (lme4) package (Bates 2008) in R without covariate adjustment.  

Reducing both σ 2
B  and σ 2

W  through covariate adjustment can increase statistical precision of impacts in 
RCTs where schools are the unit of random assignment. Again following the notation in Hedges and 
Hedberg (2007), we define the population school-level R2 as R2 2

B A= −1 /σ σ 2
B B  and the population 

student-level R2 as R2 2
W A= −1 /σ σ 2

W W , where σ 2
AB  and σ 2

AW  are the residual between and within 

variance terms after covariate adjustment. We estimate σ 2
AB  and σ 2

AW  using the lme4 package in R with 
covariate adjustment.  

The ICC, student-level R2, and school-level R2 values can be used to calculate the minimum detectable 
effect, which is the smallest program impact that can be detected with a high probability. We define the 
program impact as the difference between the mean outcome in the treatment group and the mean 
outcome in the control group. The MDE formula is:  

(1) MDE = −⎡ ⎤⎣ ⎦T − −1 1( )1 α β2,df + T ( ,df ) * Var(impact)  
 

where T is the cumulative density function of the t-distribution, α is the probability of a type 1 error, β is 
the probability of a type 2 error, and df is the number of degrees of freedom. The formula for the variance 
of the impact is:  

σ 2 σ 2

(2) Var(impact) = +AB AW  
N psch * * (1− −p) N sch * p * (1 p) * Nstu

where N  
Sch is the total number of schools in the study, p is the proportion of schools in the treatment 

group, and Nstu is the number of students in each school. The residual between and within variance terms 
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after covariate adjustment, σ 2
AB  and σ 2

AW , can be expressed in terms of the ICC, student-level R2, and 
school-level R2 values as follows:  

(3) σ σ2 2 2

 AB = −T ρ(1 RB )
.  

(4) σ σ2 2
AW = −T (1 ρ)(1− R2

W )

Plugging (2)-(4) into (1) gives the formula for the covariate-adjusted MDE: 

ρ(1− R2 ) (1− −ρ)(1 R2 )
 (5) MDE = −⎡ ⎤⎣ ⎦T − −1 1( )1 α β2,df + T ( ,df ) *σ B W

T +  
N psch * *(1− −p) Nsch * p *(1 p) * Nstu .

See Murray (1998) and Bloom (2004) for derivations of these formulas.  

Dividing the MDE by σT  yields the minimum detectable effect size (MDES), which will be our primary 
focus (instead of the MDE). A smaller MDES is more desirable than a larger MDES; studies often target 
an MDES of 0.20 or 0.25.  

In practice, the school-level R2 has a much greater effect on the MDE than the student-level R2. In this 
study, we chose to focus strictly on the school-level R2 because the precision gains from a student-level R2 
are generally quite small.2 For example, if we have a sample size of 40 schools and 1,800 students 
(equally divided among the schools), an ICC of 0.15, a school-level R2 of 0.5, and a student-level R2 of 
0.5, then the MDE would be 0.26. Reducing the school-level R2 to zero would increase the MDE to 0.36 
but reducing the student-level R2 to zero would only increase the MDE to 0.28. 

                                                      
2 For this reason, Spybrook et al. (2009) do not take the student-level R2 into account at all in their optimal design 
software.  
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Chapter 3: Data 

Student Test Score Data 

This study uses baseline and follow-up student level test score data from five large-scale experimental 
studies previously conducted for IES by Mathematica.3 See Table 3.1 for a brief description of each 
study, including the grades covered. Together, these studies yield 25 separate test score outcomes 
covering a total of 30,000 students drawn from kindergarten to grade 9 in 27 states and 500 schools. All 
but one of the studies included only elementary schools. Baseline and follow-up tests were created by a 
diverse set of test developers to measure a range of skills related to reading and mathematics proficiency 
for students of different ages. In the case of the Evaluation of Teacher Induction Programs, student pre- 
and post-test scores were collected from school districts’ administrative records. For the other five 
studies, the pre- and post-tests were selected and administered by the study.  

For each study, we have the following data. First, we have student-level baseline and follow-up test 
scores (some studies have more than one of each, because students were tested in multiple subject areas). 
For all of the studies, we analyzed one year of data, meaning that the baseline test was conducted at the 
beginning of the school year and the follow-up test was conducted at the end of that same school year. 
None of the studies suffer from attrition at the school level. However, most studies experience attrition at 
the student level. We use the study-collected baseline and follow-up tests in their original form, and we 
also aggregate up to school-level means for some analyses. We also have each school’s National Center 
for Education Statistics School identification number. This unique national identifier was used to link 
schools to external data sources. For several studies, we have a classroom identification variable. Finally, 
since all of our studies are randomized controlled trials, we have treatment assignment variables.  

School-Level Proficiency Data and Constructed Variables 

School-level proficiency data were retrieved from the State Education Data Center (SEDC) by way of the 
schooldatadirect.org website. We chose this data source because it is a single source for school-level 
proficiency data from school districts across the United States that could be easily used by future 
evaluations with no cost beyond downloading and merging the data. SEDC is funded by a nonprofit 
organization with the aim of (1) advocating for quality education data collection, standards, and use, and 
(2) serving the U.S. as a free provider of state education data and analytical tools. The site offers data on 
most U.S. schools including student demographics, economic characteristics of the surrounding 
community, and proficiency rates for the school overall as well as by grade level. SEDC proficiency data 
are obtained from individual states, and proficiency rates are based on state-specific proficiency 
standards. Specifically, the proficiency rate is reported at the school-level and is the proportion of 
students in the school that are deemed “proficient” using the state’s definition of proficiency. In some 
cases, multiple categories of proficiency are available in SEDC, but for consistency in variable 
construction across states we always used the binary categorizations “proficient” and “not proficient”. 

Researchers considering the use of SEDC school-level proficiency data as an alternative to collecting 
student-level baseline test data should be aware of the following potential limitations. First, there is 
limited middle- and high-school data in the SEDC database. Second, proficiency rates by grade level are 
less commonly available than school-wide proficiency rates. Similarly, proficiency rates for student 
                                                      
3 These data were collected by Mathematica on behalf of IES and are available as restricted use files. The five 
studies were: (1) the Evaluation of Reading Comprehension Interventions (James-Burdumy et al. 2010), (2) the 
Evaluation of the Impact of Teacher Induction Programs (Isenberg et al. 2009), (3) the Impact Evaluation of Teacher 
Preparation Models (Constantine et al. 2009), (4) the Evaluation of Mathematics Curricula (Agodini et al. 2009), 
and (5) the Evaluation of Educational Technology Interventions (Campuzano et al. 2009).  
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subgroups (such as gender, race, ELL status, and disability status) are not commonly available. Third, this 
study focuses on large multi-district evaluations, in which it is often difficult to obtain a good measure of 
school-level baseline achievement for many of the schools/districts in the study. In contrast, a researcher 
conducting a small-scale evaluation (with only one or a few districts) might do better analytically by 
focusing his/her efforts on obtaining school-level mean scores on state achievement tests for the schools 
of interest, rather than relying on SEDC data. 

Proficiency rates from the SEDC are available for multiple years and a range of student subgroups. The 
most commonly available proficiency variables are school-wide math and reading proficiency rates, 
defined as the proportion of students in the school (regardless of grade level) that are deemed 
“proficient”. These school-wide proficiency rates are available as far back as 2002. On average across the 
RCTs examined in this study, 88 percent of schools had school-wide proficiency rates available for at 
least one year. Proficiency rates are also available for various student subgroups, but we did not use 
subgroup proficiency variables because rates of missing data were too high. When proficiency rates were 
available for multiple years we created composite variables. We used two approaches to constructing 
composites. The first simply takes the mean of the yearly variables, which could be the best measure (in 
terms of precision gains) if school-level proficiency varies across time only because of measurement 
error; we call this construction the “average” composite The second takes the most recent non-missing 
value, which could be the best measure if the true achievement of students at the school is changing over 
time; we call this construction the “most recent” composite. For example, if a study’s baseline testing year 
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Table 3.1:  Descriptive Statistics for Previously Completed RCT Studies 
 

Study Purpose 
Student 
Grade Student Outcome Measures 

Unit of 
Random 

Assignment 
Number 
of States 

Number of 
Districts 

Number 
of Schools

Number of 
Students 

Response 
Rate Pretest

Response 
Rate 

Posttest 

Evaluation of Reading 
Comprehension 
Interventions 

This study evaluates the impact 
of four interventions on fifth-
grade reading achievement.  

5 Group Reading Assessment and 
Diagnostic Evaluation (GRADE), 
Educational Testing Service 
(ETS) Science Reading 
Comprehension Assessment, ETS 
Social Studies Reading 
Comprehension Assessment 

School 8 10 89 6,350 0.99 0.88 

Evaluation of Early 
Elementary School 
Mathematics Curricula 

This study compares the effects 
of four different elementary 
math curricula on improving 
student math achievement. 

1, 2 Early Childhood Longitudinal 
Study Mathematics Assessment 

School 4 4 39 1,583 0.96 0.87 

Evaluation of Teacher 
Induction Programs 

The study examines whether 
comprehensive teacher induction 
programs lead to higher teacher 
retention rates and other positive 
teacher and student outcomes as 
compared to prevailing, 
generally less comprehensive 
approaches to supporting new 
teachers.  

2-6 District-Administered 
Standardized Achievement Tests 

School 12 15 235 8,292 NAa NAa 

Evaluation of Teacher 
Preparation Models 

This study examines the effect 
of different approaches to 
teacher preparation on teacher 
practice and student 
performance.  

K-5 Reading Comprehension, 
Vocabulary, Math Concepts and 
Applications, and Math 
Computation subtests of the 
California Achievement Tests, 5th 
Edition 

Student 7 20 63 2,491 0.97 0.90 

Evaluation of the 
Effectiveness of 
Reading and 
Mathematics Software 
Products (EERMSP) 

This study randomly assigned 
teachers to a treatment group 
that uses a specified educational 
technology, or a control group 
that used conventional teaching 
approaches. The study consisted 
of four sub-studies of different 
interventions at different grade 
levels (see four rows below).  

- - - - - - -   

EERMSP Grade 1 - 1 Stanford Achievement Test 
(version 10)  Reading , and Test 
of Word Reading Efficiency 

Teacher 12 15 53 4,424 0.97 0.95 
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Study Purpose 
Student 
Grade Student Outcome Measures 

Unit of 
Random 

Assignment 
Number 
of States 

Number of 
Districts 

Number 
of Schools

Number of 
Students 

Response 
Rate Pretest

Response 
Rate 

Posttest 

EERMSP Grade 4 - 4 Stanford Achievement Test 
(version 10), Reading 

Teacher 9 12 44 3,109 0.93 0.93 

EERMSP Grade 6 - 6 Stanford Achievement Test 
(version 10), Math 

Teacher 7 10 28 4,261 0.96 0.89 

EERMSP Algebra - 8, 9 Educational Testing Service’s 
(ETS) End-of-Course Algebra 
Assessment 

Teacher 8 11 24 3,009 0.82 0.81 

Source: Previously completed RCT studies. 

aResponse rates are not applicable for the Teacher Induction study because this study used all available test score data from school districts covering the grades included in the study.  

RCT = randomized controlled trial. 
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was 2006, and a 2006 proficiency rate is available for a given school, then the “most recent” composite 
variable equals the 2006 value. Otherwise, we revert to the next most recent value (2005, 2004, etc.). 
Under both constructions, the final composite is missing only if data are missing in all years. When a 
composite has a missing value, we impute to the mean of that composite across all schools in a given 
RCT and include a missing value dummy in regression analyses.  

Finally, we also included additional school-level information available from the SEDC in our analyses. In 
particular, we included the racial composition of the student body, the proportion of students who are 
eligible for free or reduced-price lunch (FRPL), and the percentage of students classified as English 
language learners (ELL). For each RCT study, we used these variables only if they were non-missing for 
at least half the schools in the study. As a result, the regression analysis conducted below includes the 
race and FRPL variables for most of the studies, but includes the ELL variable for only one study. As 
with the proficiency data, when race, FRPL, or ELL data was available for multiple years we created two 
composite variables. The first simply takes the mean of the yearly variables; we call this construct the 
“average” race, ELL, and FRPL. The second takes the most recent non-missing value; we call this 
construct the “most recent” race, ELL, and FRPL.  

State-Level Proficiency Rates, NAEP Scores, and Related Constructs 

School-level proficiency rates may vary across states because of true differences in student academic 
achievement or because of differences in the stringency of the performance standards adopted by the 
states. Unfortunately, there is no way to directly compare school-level proficiency rates across states 
because each state establishes its own performance standards. However, state-level National Assessment 
of Educational Progress (NAEP) scores can be used as an anchor to partially disentangle true variation in 
student achievement across states from variation in how proficiency is defined across states.  

We collected data on state-level proficiency rates and state-level NAEP scores (mean and standard 
deviation) in order to control for variation across states in how proficiency is defined. State-level 
proficiency rates were retrieved from educational data sites of the specific state, and the rates indicate the 
proportion of students who met the state’s proficiency requirements. Some state proficiency measures 
used multiple proficiency ratings (such as, “not proficient,” “limited proficiency,” “advanced 
proficiency”). In these cases, we collapsed the ratings into two categories, “proficient” and “not 
proficient.” NAEP scores were retrieved from the National Center for Educational Statistics website, and 
they indicate how well a representative subset of students from each state performed against the same 
proficiency measure.  

The method that we use to anchor state-level proficiency measures using the NAEP scores is as follows. 
Assuming that percentiles of the NAEP distribution are equal to percentiles of the state tests used to 
determine proficiency, and assuming that the state test scores are distributed normally, we infer the 
proficiency cutoff used in each state and express that cutoff on the NAEP scale. We then calculate an 
imputed NAEP score for every school based on the school-level proficiency rate. Clearly, the assumptions 
of normality and equal percentiles between the NAEP and state test scores are unlikely to hold; however, 
this is the best available approach to deal with the challenging issue of incomparable proficiency metrics 
across states. Several studies have clarified the challenges of linking state tests at the student level (Linn 
1993; Feuer et al. 1999; Koretz et al. 1999). However, for our purposes here, a failure of this method 
would simply reduce the precision gains from covariate adjustment—it would not introduce bias into the 
impact estimates. For other examples of equipercentile linking approaches, see McLaughlin and Bandeira 
de Mello (2002, 2003) and Braun and Qian (2007). 

Though NAEP scores are attractive because they can serve as a benchmark for all states, they also have 
some limitations. NAEP scores are only available for certain years, in specific subjects, and for a limited 
number of grade levels. On several occasions, the NAEP score that was most relevant for our sample may 



 10   Data 

have been based on students that were a few grades above and a few years behind our sample. Also, the 
correlation between NAEP scores and state tests may vary across states.  

Table 3.2 provides a list of the various models used in the MDES analyses. Each model includes a 
constant term, district dummies, demographic variables, and different combinations of the proficiency 
measures described above. These various models are examined in order to uncover any general patterns in 
the results that indicate whether certain proficiency variables perform better than others. Specifically, we 
examine whether math or reading proficiency measures perform better, whether average or most recent 
scores perform better, and whether the NAEP adjustment makes a difference in terms of the explanatory 
power of each proficiency measure. In Chapter 4, we examine the precision gains associated with these 
models.  

Table 3.3 provides a key for all of the study outcomes examined throughout the report. A capital letter is 
used to reference each study outcome. The outcomes are sorted in descending order by the school-level 
R2 using the study-collected baseline test. 
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Table 3.2:  Regression Models 
 

Used in the MDES Analysis 

Model Number Model Description 

Model 1 

Model 2 

Model 3 

Model 4 

Model 5 

Model 6 

Model 7 

Model 8 

Model 9 

Model 10 

Model 11 

Model 12 

Model 13 

Model 14 

Constant term, district dummies, and most recent race, English language learners (ELL), and 
free or reduced-price lunch (FRPL). 

Constant term, district dummies, and average race, ELL, and FRPL. 

Constant term, district dummies, school-level math and reading proficiency rates for the most 
recent year available that was on or before the year of study-level baseline testing, and most 
recent race, ELL, and FRPL. 

Constant term, district dummies, school-level reading proficiency rates for the most recent year 
available that was on or before the year of study-level baseline testing, and most recent race, 
ELL, and FRPL. 

Constant term, district dummies, school-level math proficiency rates for the most recent year 
available that was on or before the year of study-level baseline testing, and most recent race, 
ELL, and FRPL. 

Constant term, district dummies, the average school-level math and reading proficiency rates 
across all available years on or before the year of study-level baseline testing, and average race, 
ELL, and FRPL. 

Constant term, district dummies, the average school-level reading proficiency rates across all 
available years on or before the year of study-level baseline testing, and average race, ELL, and 
FRPL. 

Constant term, district dummies, the average school-level math proficiency rates across all 
available years on or before the year of study-level baseline testing, and average race, ELL, and 
FRPL. 

Constant term, district dummies, school-level math and reading proficiency rates for the most 
recent year available, transformed into NAEP scores, and most recent race, ELL, and FRPL. 

Constant term, district dummies, school-level reading proficiency rates for the most recent year 
available, transformed into NAEP scores, and most recent race, ELL, and FRPL. 

Constant term, district dummies, school-level math proficiency rates for the most recent year 
available, transformed into NAEP scores, and most recent race, ELL, and FRPL. 

Constant term, district dummies, average school-level math and reading proficiency rates 
across all available years, transformed into NAEP scores, and average race, ELL, and FRPL. 

Constant term, district dummies, average school-level reading proficiency rates across all 
available years, transformed into NAEP scores, and average race, ELL, and FRPL. 

Constant term, district dummies, average school-level math proficiency rates across all 
available years, transformed into NAEP scores, and average race, ELL, and FRPL. 

Source: 

 
 

State Education Data Center (SEDC), National Center for Educational Statistics, and educational data 
sites for individual states. 
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Table 3.3:  Study/Outcome Codes 
 

Letter Study Outcome 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
O 
P 
Q 
R 
S 
T 
U 
V 
W 
X 
Y 

Reading and Mathematics Software Products: Grade 4 
Reading and Mathematics Software Products: Grade 4 
Reading and Mathematics Software Products: Grade 6 
Reading and Mathematics Software Products: Grade 6 
Teacher Preparation Models 
Reading Comprehension Interventions 
Reading and Mathematics Software Products: Grade 6 
Reading and Mathematics Software Products: Grade 4 
Reading and Mathematics Software Products: Grade 4 
Reading Comprehension Interventions 
Teacher Preparation Models 
Teacher Preparation Models 
Reading and Mathematics Software Products: Algebra 
Reading and Mathematics Software Products: Algebra 
Reading Comprehension Interventions 
Teacher Induction Programs 
Teacher Induction Programs 
Reading and Mathematics Software Products: Algebra 
Early Elementary School Mathematics Curricula 
Reading and Mathematics Software Products: Grade 1 
Reading and Mathematics Software Products: Grade 1 
Reading and Mathematics Software Products: Grade 1 
Teacher Preparation Models 
Reading and Mathematics Software Products: Algebra 
Reading and Mathematics Software Products: Grade 1 

Stanford Achievement Test Version 10: Total Reading Score 
Stanford Achievement Test Version 10: Work Study Skills Score 
Stanford Achievement Test Version 10: Problem Solving Score 
Stanford Achievement Test Version 10: Total Math Score 
California Achievement Test, 5th Edition: Reading Comprehension 
Group Reading Assessment and Diagnostic Evaluation  
Stanford Achievement Test Version 10: Procedures Score 
Stanford Achievement Test Version 10: Reading Vocabulary Score 
Stanford Achievement Test Version 10: Reading Comprehension Score 
Educational Testing Service Social Studies Reading Comprehension Assessment 
California Achievement Test, 5th Edition: Math Concepts and Applications 
California Achievement Test, 5th Edition: Vocabulary 
Educational Testing Service End-of-Course Algebra Assessment: Processes Score 
Educational Testing Service End-of-Course Algebra Assessment: Skills Score 
Educational Testing Service Science Reading Comprehension Assessment 
District-Administered Standardized Achievement Test: Math 
District-Administered Standardized Achievement Test: Reading 
Educational Testing Service End-of-Course Algebra Assessment: Total Score 
Early Childhood Longitudinal Study Mathematics Assessment 
Stanford Achievement Test Version 10: Word Reading Score 
Stanford Achievement Test Version 10: Total Reading Score 
Stanford Achievement Test Version 10: Sentence Reading Score 
California Achievement Test, 5th Edition: Math Computation 
Educational Testing Service End-of-Course Algebra Assessment: Concepts Score 
Stanford Achievement Test Version 10: Sounds and Letters Score 

Source: Previously completed RCT studies.  
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Chapter 4:  Precision Gains from School-Level Proficiency Data 
We compare the precision gains from study-collected baseline tests to models that incorporate different 
combinations of proficiency measures in Tables 4.1 and 4.2 and in Figure 4.1. Table 4.1 shows the ICC; 
the school-level R2 achieved using the base model (that is, district dummies only); the school-level mean 
of the study-collected baseline test score; the school-level mean of the study-collected baseline test and 
the most recent school-level FRPL, ELL, and racial composition data4;  the “most recent” proficiency 
measure and the most recent school-level FRPL, ELL, and racial composition data; and the “best” 
proficiency, FRPL, ELL, and racial composition measures, which are the measures that yield the highest 
R2. We included results from the model using the “most recent” proficiency measure for every 
study/outcome to show what precision gains are possible using a consistent approach across all studies. 
We included results from the model using the “best” proficiency measure to illustrate what additional 
gains might be possible in cases where a researcher believes that gains which might be specific to their 
data set are still valuable.5 The last column of the table shows the difference between the school-level R2 
achieved using the baseline test and the school-level R2 achieved using the “best” proficiency and other 
school-level measures. Figure 4.1 plots this difference for all 25 outcomes. Table 4.2 shows the MDES 
values achieved using these same four models; the second-to-last column shows the difference between 
the MDES achieved using the baseline test and the MDES achieved using the “best” school-level 
measures. In all cases we calculated the MDES assuming a sample size of 40 schools and 1,800 students, 
evenly divided between the treatment and control groups (we did not use the study’s actual sample size so 
that variation in the MDES is due entirely to differences in the ICC and R2). The last column shows the 
number of additional schools that would need to be added to a study using the “best” proficiency model in 
order to achieve the same MDES that was achieved with the study-collected test scores.  

We find that, for 22 of 25 outcomes, including the “best” school-level proficiency and other school-level 
measures as covariates will reduce the MDE relative to a model that only includes school district 
dummies (see table 4.2). For example, the school-level R2 value for outcome E rises from 0.37 to 0.63 
when moving from the base model to the “best” proficiency and other school-level measures (see Table 
4.1), and the MDES falls from 0.35 to 0.28 (see table 4.2), Across all 25 outcomes the average ratio of the 
MDES using the best proficiency and demographic covariates to the MDES using only district dummies 
is 0.82.  

Among the school-level proficiency variables examined, we find that the NAEP-standardized versions 
tend to perform approximately as well as the variables that are not NAEP-standardized and that the 
“most-recent” variable construction performs the same as the “average” construction. We calculated the 
ratio of school-level R2 and MDES values using NAEP-standardized variables to those values using 
variables that are not NAEP-standardized. Those medians of those ratios are 0.998 and 1.001 (both 
slightly favoring the non-NAEP-standardized variables). We interpret these findings to suggest that there 
is no practical advantage to NAEP-standardization. We also constructed similar ratios of school-level R2  
                                                      
4 We included the race, ELL, and FRPL variables in the models that contain SEDC proficiency rates because they 
are easy to download simultaneously with the proficiency rates and may provide additional explanatory power. In 
order to make valid comparisons between the models that contain study-collected baseline test scores and the 
models that contain SEDC proficiency data, the race, ELL, and FRPL variables are included in both types of 
models. 

5 The higher school-level R2 achieved using the “best” proficiency measure (relative to the “most recent” measure) 
might be due to a spurious correlation between that proficiency measure and the outcome measure (the follow-up 
test score), and thus might not be observed in a sample of different schools. In other words, for each completed 
RCT, for each outcome, we have identified the school-level proficiency measure that results in the highest school-
level R2 for the particular sample of schools included in the study. Had the study included a different set of schools, 
a different proficiency measure might have been chosen as the “best,” and the school-level R2 achieved using that 
measure might not be as high as the school-level R2 value displayed in Table 4.1.  
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Table 4.1:  School-Level R2 
 

Values   2( )RB       Achieved Using Various Measures of Baseline Student Achievement 

  

Outcome ICC 

2School-Level R2 ( )RB   

Model Number 
of “Best”  

Proficiency  
Measure 

Difference Between 
2( )RB  Using  

Baseline Test and  
“Best” Proficiency 

Measure 
Base  

Model 

School-Level 
Mean of Study-

Collected  
Baseline Test 

Most Recent  
School-Level Mean Proficiency  
of Study-Collected Measure + Most  

Baseline Test +  Recent Race,  
Most Recent Race, ELL, FRPL 

ELL, FRPL (Model 3) 

“Best” 
Proficiency  

Measure + Race, 
ELL, FRPL 

A
B
C
D
E 
F 
G
H
I
J 
K
L 
M
N
O
P 
Q
R
S 
T 
U
V
W
X
Y

 0.27 
 0.24 
 0.16 
 0.16 

0.21 
0.14 

 0.12 
 0.22 

 0.22 
0.12 

 0.24 
0.30 

 0.10 
 0.16 
 0.12 

0.15 
 0.14 
 0.20 

0.19 
0.07 

 0.10 
 0.11 
 0.12 
 0.08 
 0.10 

0.69 
0.82 
0.24 
0.22 
0.37 
0.69 
0.28 
0.70 
0.57 
0.68 
0.19 
0.29 
0.68 
0.75 
0.71 
-0.08 
-0.08 
0.68 
0.34 
0.23 
0.26 
0.30 
0.11 
0.73 
0.32 

0.97 
0.98 
0.93 
0.93 
0.92 
0.92 
0.91 
0.89 
0.89 
0.91 
0.86 
0.93 
0.86 
0.86 
0.85 
0.67 
0.66 
0.71 
0.82 
0.65 
0.66 
0.55 
0.53 
0.71 
0.57 

0.97 
1.00 
0.95 
0.97 
0.91 
0.92 
0.96 
0.88 
0.88 
0.90 
0.85 
0.94 
0.74 
0.75 
0.83 
0.74 
0.72 
0.40 
0.88 
0.76 
0.80 
0.66 
0.62 
0.66 
0.69 

0.70 
0.83 
0.22 
0.22 
0.63 
0.84 
0.30 
0.73 
0.57 
0.90 
0.32 
0.58 
0.89 
0.93 
0.81 
0.34 
0.35 
0.85 
0.53 
0.60 
0.63 
0.62 
0.10 
0.83 
0.55 

0.73 
0.86 
0.28 
0.23 
0.63 
0.85 
0.30 
0.74 
0.60 
0.93 
0.36 
0.59 
1.00 
1.00 
0.84 
0.38 
0.37 
0.99 
0.59 
0.61 
0.64 
0.63 
0.15 
0.88 
0.59 

Model 9 
Model 9 
Model 6 
Model 6 
Model 3 

Model 10 
Model 3 
Model 9 

Model 10 
Model 9 
Model 1 

Model 11 
Model 9 
Model 9 
Model 11 
Model 14 
Model 14 
Model 9 
Model 2 
Model 5 
Model 7 
Model 5 
Model 5 
Model 9 
Model 7 

0.24 
0.12 
0.65 
0.70 
0.29 
0.07 
0.62 
0.14 
0.29 
-0.02 
0.50 
0.33 
-0.14 
-0.14 
0.02 
0.29 
0.29 
-0.28 
0.23 
0.04 
0.02 
-0.08 
0.38 
-0.17 
-0.03 
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Source: Previously completed RCT studies. 

Note: District dummies are included in all models. The base model includes only district dummies. The “best” proficiency measure is defined as the 
school-level proficiency measure that achieves the highest school-level R2. Detailed descriptions of each model are listed in Table III.2. 

ELL = English language learner; FRPL = free or reduced-price lunch; ICC = intraclass correlation coefficient; RCT = randomized controlled trial. 
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Table 4.2:  Minimum Detectable Effect 
 

Size (MDES) Achieved Using Various Measures of Baseline Student Achievement 

  

Outcome ICC 

 MDES     

Base  
Model 

School-Level 
Mean of Study-

Collected  
Baseline Test 

School-Level Mean 
of Study-Collected 

Baseline Test +  
Most Recent Race, 

ELL, FRPL 

Most Recent  
Proficiency  

Measure + Most 
Recent Race,  
ELL, FRPL 
(Model 3) 

“Best”  
Proficiency 
Measure + 
Race, ELL, 

FRPL 

Model Number 
of “Best”  

Proficiency  
Measure 

Difference  
Between MDES 
Using Baseline 
Test and “Best” 

Proficiency  
Measure 

Number of  
Additional  

Schools Needed 
to Achieve  

Original MDES 
A
B
C
D
E 
F 
G
H
I
J 
K
L 
M
N
O
P 
Q
R
S 
T 
U
V
W
X
Y

 0.27 
 0.24 
 0.16 
 0.16 

0.21 
0.14 

 0.12 
 0.22 

 0.22 
0.12 

 0.24 
0.30 

 0.10 
 0.16 
 0.12 

0.15 
 0.14 
 0.20 

0.19 
0.07 

 0.10 
 0.11 
 0.12 
 0.08 
 0.10 

0.29 
0.22 
0.34 
0.34 
0.35 
0.23 
0.30 
0.27 
0.31 
0.22 
0.42 
0.44 
0.21 
0.23 
0.21 
0.39 
0.38 
0.26 
0.35 
0.26 
0.29 
0.28 
0.33 
0.19 
0.27 

0.14 
0.13 
0.16 
0.16 
0.17 
0.16 
0.16 
0.19 
0.19 
0.16 
0.21 
0.18 
0.17 
0.19 
0.18 
0.24 
0.24 
0.25 
0.21 
0.20 
0.22 
0.24 
0.25 
0.19 
0.23 

0.15 
0.12 
0.15 
0.14 
0.17 
0.16 
0.14 
0.19 
0.19 
0.16 
0.21 
0.17 
0.20 
0.22 
0.18 
0.22 
0.22 
0.34 
0.18 
0.18 
0.18 
0.22 
0.23 
0.20 
0.21 

0.29 
0.22 
0.35 
0.35 
0.28 
0.19 
0.30 
0.25 
0.30 
0.16 
0.39 
0.34 
0.16 
0.16 
0.19 
0.32 
0.31 
0.20 
0.30 
0.21 
0.22 
0.23 
0.33 
0.17 
0.23 

0.28 
0.20 
0.34 
0.34 
0.28 
0.18 
0.30 
0.25 
0.30 
0.15 
0.38 
0.34 
0.13 
0.13 
0.18 
0.31 
0.30 
0.13 
0.28 
0.20 
0.22 
0.22 
0.32 
0.16 
0.23 

Model 9 
Model 9 
Model 6 
Model 6 
Model 3 

Model 10 
Model 3 
Model 9 

Model 10 
Model 9 
Model 1 
Model 11 
Model 9 
Model 9 

Model 11 
Model 14 
Model 14 
Model 9 
Model 2 
Model 5 
Model 7 
Model 5 
Model 5 
Model 9 
Model 7 

-0.13 
-0.07 
-0.18 
-0.19 
-0.11 
-0.02 
-0.14 
-0.06 
-0.11 
0.01 
-0.17 
-0.16 
0.04 
0.06 
-0.01 
-0.07 
-0.06 
0.13 
-0.07 
-0.01 
0.00 
0.02 
-0.07 
0.03 
0.00 

101 
49 
133 
141 
66 
11 
96 
29 
58 
-3 
88 
99 
-15 
-21 
2 
24 
23 
-28 
32 
2 
2 
-5 
23 
-12 
-2 
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Source: Previously completed RCT studies. 

Note: We calculated all MDES using a sample size of 40 schools and 1,800 students, evenly divided between the treatment and control groups (we did not 
use each study’s actual sample size so that variation in the MDES is due only to variation in the ICC and R2). District dummies are included in all 
models. The base model includes only district dummies. The “best” proficiency measure is defined as the school-level proficiency measure that 
achieves the highest school-level R2. The last column shows the number of additional schools that would need to be added to a study in order to 
achieve the same MDES using the “best” proficiency measure that was obtained using the study-collected baseline test. Detailed descriptions of 
each model are listed in Table III.2. 

ELL = English language learner; FRPL = free or reduced-price lunch; ICC = intraclass correlation coefficient; RCT = randomized controlled trial. 
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and MDES values comparing the most recent proficiency variables to the average (averaging across 
multiple years of data) proficiency variables. Those ratios were 1.007 and 0.995. Finally, we constructed 
ratios of school-level R2 and MDES values comparing the math-and-reading-combined proficiency 
variables to the reading-only and math-only proficiency variables. Those ratios were 1.02 and 0.99 for 
reading-only and 1.005 and 0.997 for math-only, suggesting that the combined reading and math 
proficiency variables performed no better than the reading-only and math-only variables.  

While including school-level proficiency variables definitely improves statistical precision compared to 
not including any prior achievement measures, we find that, for the majority of outcomes, some precision 
is lost when school-level proficiency data are used instead of the study-collected baseline test data, and 
that the size of this loss can be quite large. This is demonstrated in Tables 4.1 and 4.2 by smaller school-
level R2s and higher MDES values when school-level proficiency data are used instead of study-collected 
baseline test data6. For example, the school-level R2 value for outcome E falls from 0.92 to 0.63 when 
moving from the baseline test to the “best” proficiency and other school-level measures, and the MDES 
rises from 0.17 to 0.28. Across all 25 outcomes, the average ratio of the R2 using the “best” proficiency 
and other school-level measures to the R2 using just district dummies and the study-collected baseline test 
data was 0.79. Across all 25 outcomes, the average ratio of the MDES using the “best” proficiency and 
other school-level measures to the MDES using just district dummies and the study-collected baseline test 
data was 1.31. Adding the FRPL, ELL, and racial composition variables to a regression that includes the 
study-collected baseline test has a negligible benefit. Adding the best school-level proficiency variables to 
a regression that includes the study-collected baseline test (not shown in table) increases the average 

                                                      
6 Note when comparing MDE and R2 values across studies holding the covariate choice fixed that a low school-level 
R2 does not necessarily mean a high MDE, because a low school-level R2 is more likely to be accompanied by a low 
ICC: across all 25 outcomes, the correlation between the ICC and the school-level R2 achieved using the study-
collected baseline test is 0.59 (which is statistically significant, with a p-value of 0.002).  
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school-level R2 by 0.05, which reduces the average MDE by 0.02. For the average study, this gain in 
precision is equivalent to adding nine schools to the study sample.  

Figure 4.1 shows the difference between the school-level R2 values achieved using the baseline test and 
the school-level R2 values achieved using the “best” proficiency measure for all 25 outcomes. Positive 
values in this figure correspond to cases where the study-collected baseline test performs better than the 
school-level proficiency variables. Negative values correspond to cases where the school-level 
proficiency variables performed better than the study-collected variables. We see that for the majority of 
outcomes (18 out of 25), the school-level proficiency data do not perform as well as the study-collected 
baseline test data in terms of explaining the school-level variation in the outcome variable.  

In only 7 out of 25 cases do we find that school-level proficiency data perform as well as or better than 
study-collected baseline test data in terms of the school-level R2. For example, for outcome J, the “best” 
school-level proficiency measure produced a school-level R2 that was slightly greater than the school-
level R2 achieved using the study-collected baseline test data (0.93 versus 0.91), and produced an MDES 
of 0.15 instead of the MDES of 0.16 that was achieved using the baseline test data. 

Another way to interpret the rise in the MDES when moving from a study-collected baseline test to a 
school-level proficiency measure is in terms of the number of additional schools that would be needed in 
the study in order to achieve the MDES using the original baseline test score. The last column of Table 
4.2 provides this information. We see that, for most outcomes, additional schools would be needed in the 
study sample in order to achieve the MDES achieved using baseline test data. Across all 25 outcomes, the 
number of additional schools needed ranges from -28 to 141, with an average of 36 (that is, the average 
sample size would have to nearly double to compensate for the loss in precision) and a median of 23.  

For each of the 25 outcomes, we also calculated the number of schools needed to achieve an MDES of 
0.20, using the school-level mean of the baseline test and the “best” school-level proficiency measure, and 
using both measures. These results are displayed in Table 4.3. On average, the number of schools needed 
to achieve an MDES of 0.20 when using study-collected baseline test data is 37; the average number of 
schools needed when using school-level proficiency data is 64. Thus, on average, the number of schools 
needed in a study would need to increase by nearly three-quarters in order to achieve an MDES of 0.20 
when using proficiency data instead of a study-collected baseline test. 

Performance Correlates: When Do Proficiency Data Perform Well? 

We conducted some additional analyses to test whether proficiency data perform better (that is, achieve 
higher school-level R2s and lower MDES values) in certain contexts. Specifically, we explored whether 
certain aspects of studies or the school-level proficiency data were correlated with the difference in the 
school-level R2 achieved using the “best” proficiency measure and the school-level R2 achieved using the 
study-collected baseline test. In particular, we hypothesized that school-level proficiency data might 
perform better when: (1) the study has a larger number of schools, (2) the study has a smaller number of 
states, (3) the students in the study are older, and (4) the amount of missing proficiency data is lower. 
Because small sample sizes might lead to spurious underestimates of the school-level R2, proficiency data 
might perform better in studies with larger numbers of schools. In addition, states often have very 
different definitions of “proficient,” resulting in school-level proficiency measures that are not necessarily 
comparable across states. Therefore, one might expect that proficiency data will perform better in studies 
where schools are concentrated in fewer states, because the proficiency measure will be comparable 
across all schools within the same state. Among younger students (kindergarten, first grade, and second 
grade), school-level proficiency measures may be less effective in explaining differences in follow-up test 
scores across schools because the school-level measures of proficiency are less likely to be based on these 
students (since these younger students were less likely to be in the schools at the time of earlier testing). 
Thus, one might expect that school-level proficiency data will perform better when the students in a study 
are older. Finally, recall that when proficiency data were missing for a particular school, we imputed the  
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Table 4.3:  Number of Schools Needed to Achieve an MDES of 0.2 
 

2 Number of Schools Needed  
School-Level R2 ( )    RB  to Achieve an MDES of 0.2 

Using School- Using School- 
Level Mean of  Using “Best”  Level Mean of  Using “Best”  

Study-Collected  Proficiency  Study-Collected  Proficiency  
Outcome ICC Baseline Test Measure  Baseline Test Measure 

A 0.27 0.97 0.73  21 72 
B 0.24 0.98 0.86  19 42 
C 0.16 0.93 0.28  26 107 
D 0.16 0.93 0.23  26 113 
E 0.21 0.92 0.63  29 77 
F 0.14 0.92 0.85  26 34 
G 0.12 0.91 0.30  26 83 
H 0.22 0.89 0.74  35 61 
I 0.22 0.89 0.60  35 85 
J 0.12 0.91 0.93  26 24 
K 0.24 0.86 0.36  42 136 
L 0.30 0.93 0.59  31 111 
M 0.10 0.86 1.00  29 18 
N 0.16 0.86 1.00  34 17 
O 0.12 0.85 0.84  32 32 
P 0.15 0.67 0.38  56 90 
Q 0.14 0.66 0.37  54 86 
R 0.20 0.71 0.99  61 18 
S 0.19 0.82 0.59  43 77 
T 0.07 0.65 0.61  37 40 
U 0.10 0.66 0.64  44 46 
V 0.11 0.55 0.63  56 49 
W 0.12 0.53 0.15  62 97 
X 0.08 0.71 0.88  36 26 
Y 0.10 0.57 0.59  51 50 

 
Source: Previously completed RCT studies. 
 
Note: District dummies, race, ELL, and FRPL are included as covariates in all models. The “best” proficiency measure 

is defined as the school-level proficiency measure that achieves the highest school-level R2.  
 
ELL = English language learner; FRPL = free or reduced-price lunch; ICC = intraclass correlation coefficient;  
MDES = m2inimum detectable effect size; RCT = randomized controlled trial.  
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missing value with the mean of the variable and included a missing value dummy. If proficiency data are 
missing for a large portion of schools in the study, then we would expect that the explanatory power of 
the proficiency measure would decrease, resulting in lower school-level R2 values and higher MDES 
values. We also examined whether proficiency data perform better when the outcome is a math or reading 
test, but we do not have a clear hypothesis as to why proficiency data would perform better for one 
outcome than the other. 

Table 4.4 shows the correlations (across all 25 outcomes) of the school-level R2 and the MDES associated 
with using school-level proficiency (and FRPL, ELL, and racial composition), with the number of schools 
in the study, the number of states in the study, the average grade level of students in the study, and the 
proficiency data missing rate.7 We also examined the correlations between various study aspects and the 
log ratio of the R2 and MDES values achieved using the “best” school-level proficiency data (and FRPL, 
ELL, and racial composition) to the R2 and MDES values achieved using the study-collected baseline test 
score. We include the log ratio in order to “difference out” all common inputs into the R2 and MDES 
(such as the ICC and the contribution of school district dummies to the school-level R2). Thus, variation 
in the log ratios across studies is due to the difference between adjusting for the study-collected test 
versus adjusting for school-level proficiency rates.  

We found that neither the school-level R2 nor the MDES achieved using the “best” proficiency measure is 
correlated with the number of schools in the study or the number of states in the study. However, both the 
school-level R2 and the MDES are correlated with the average grade level of students in the study 
(correlation coefficients of 0.43 and -0.48), and these correlations are statistically significant at the 5 
percent significance level. Thus, it appears that school-level proficiency data perform better when the 
students in a study are older. However, the difference in R2 and MDES values between proficiency and 
study-collected baseline tests is not significantly correlated with grade level. Thus, it would seem that, 
while proficiency measures yield a higher R2 for older students, so do study-collected baseline test scores.  

We find that the MDE and school-level R2 are not correlated with the rate of missing proficiency data. 

Finally, we compared the average school-level R2 for math outcomes to that of reading outcomes (not 
shown in table). The average school-level R2 for reading outcomes was 0.69 and the average for math 
outcomes was 0.56. The difference was not statistically significant (p-value: 0.28).  
 
 

                                                      
7 The p-values do not take into account dependencies among the 25 outcomes resulting from the fact that there are 
multiple outcomes within each RCT study.  
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Table 4.4:  Correlations of School-Level R2  
 

2 ( )RB and MDES Values with Various Study Aspects  

Study Aspect 

Correlation with 
School-Level 

2R2 ( )   RB
Correlation 
with MDES 

Correlation with the Log  
Ratio of the School-Level R2  
Using the “Best” Proficiency  
Measure to the School-Level  

 R2 Using the Baseline Test

Correlation with the Log 
Ratio of the MDES Using 

the “Best” Proficiency  
Measure to the MDES  

Using the Baseline Test  

Number of 
Schools in the 
Study 
  
Number of States 
in the Study 

  
Average Grade 
of Students 

  
Proficiency Data 
Missing Rate 

Correlation 
coefficient 
P-valuea

Correlation 
coefficient 
P-valuea

Correlation 
coefficient 
P-valuea

Correlation 
coefficient 
P-valuea

-0.27 
 0.20 

 

0.02 
 0.91 

 

0.43 
 0.03 

 

0.24 
 0.25 

0.22 
0.29 

 

-0.16 
0.46 

 

-0.48 
0.02 

 

-0.36 
0.07 

-0.11 
0.61 

 

0.29 
0.16 

 

0.17 
0.42 

 

0.30 
0.14 

0.04 
0.84 

 

-0.25 
0.22 

 

-0.36 
0.08 

 

-0.29 
0.16 

 
Source: Previously completed RCT studies. 
 
Note: This table shows the correlations of the school-level R2 and the MDES achieved using the “best” proficiency 

measure with the number of schools in the study, the number of states in the study, the average grade level of 
students in the study, and the amount of missing proficiency data. The table also shows the correlations of the log 
ratio of the school-level R2 (or MDES) using the “best” proficiency measure to the school-level R2 (or MDES) 
using the study-administered baseline test with the number of schools in the study, the number of states in the 
study, the average grade level of students in the study, and the amount of missing proficiency data. The “best” 
proficiency measure is defined as the school-level proficiency measure that achieves the highest school-level R2. 

 
aP-values do not take into account dependencies among the 25 outcomes resulting from the fact that there are multiple outcomes 
within each RCT study.  
 
MDES = minimum detectable effect size; RCT = randomized controlled trial.  
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Chapter 5:  Additional Analyses 
We conducted two additional analyses in order to better understand the findings of Chapter 4 and to 
explore an alternative approach to cost savings in collecting baseline test data. First, we partially 
decomposed the source of the precision loss when using proficiency measures instead of a study-collected 
test score. Second, we examined an alternative strategy for cost savings in which subsamples of students 
are tested at baseline instead of testing all students.  

Decomposing Precision Loss 

In Chapter 4, we found that, on average, the ratio of the school-level R2 using the best proficiency 
measure to the school-level R2 using the study-collected pre-test was 0.73. There are several reasons why 
school-level achievement measures might not perform as well as study-collected student-level 
achievement measures in terms of increasing precision and decreasing the MDES. First, publically 
available school-level achievement measures might represent different students than those participating in 
the study. This could be because the school-level measures pertain to a different cohort of students, a 
different grade, or even a different set of students within the same grade and cohort (because students 
transfer in and out of schools). Second, school-level achievement measures could be for a different test 
than the study-collected follow-up test (for example, reading versus math) or a different aspect of the 
same subject (such as, vocabulary versus comprehension in reading).  

While we cannot tell which of these reasons may be driving the results in Chapter 4, we can partially 
decompose the source of the precision loss when using proficiency measures instead of study-collected 
test score data. Specifically, we can examine how school-level R2 values change when the test, grade-
level, and student cohort are held constant, but a different set of students is used to calculate the school-
level baseline achievement measure.  

We explore this issue using the study-collected test scores by comparing two different school-level R2 
values: one in which we calculate a school-level R2 using aggregate pre-test data for the same set of 
students for whom we have post-test scores and another in which we calculate the school-level R2 using a 
disjoint subsample of students. Specifically, we can divide students into two equally sized groups, A and 
B, within each school. We can then calculate a school-level R2 by regressing the post-test for students in 
group A on the school-level aggregate of their pre-test scores. We can also calculate a school-level R2 by 
regressing the post-test for students in group A on the school-level aggregate of the pre-tests of students 
in group B. Comparing these two R2s shows the precision loss associated with using a pre-test for a 
different set of students in the same school, holding all other factors constant.  

In Table 5.1 we present these two R2 values for all 25 cases. The values reported in this table are the 
average R2 values across 1,000 simulation replications. For each replication, we re-randomized students 
into the groups A and B described above. The average ratio of the school-level R2 for disjoint samples to 
the school-level R2 for the same samples is 0.72. Recall that the ratio of the school-level R2 using the best 
proficiency measure to the school-level R2 using the study-collected pre-test was 0.73. Despite the 
similarity in these numbers, we cannot claim that this issue completely explains the difference in school-
level R2 between the best proficiency measure and the study-collected pre-test because the proficiency 
scores are not always for completely disjoint samples and because the proficiency scores are based on 
different tests than the study-collected pre-test. Furthermore, we had to cut our student sample in half to 
conduct this analysis, and smaller samples of disjoint students that are randomly sampled from the same 
school are more likely to differ from one another by chance. Nevertheless, this analysis shows that the 
difference in  
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Table 5.1:  School-Level R2  

 

2( )RB When Disjoint Student Samples Are Used at Baseline and Follow-Up 

Outcome 

2School-level R2 ( )RB  Using the  
Same Students at Baseline  

and Follow-up 

2School-level R2 ( )RB  Using Disjoint  
Sets of Students at Baseline  

and Follow-up Difference 
A
B
C
D
E 
F 
G
H
I
J 
K
L 
M
N
O
P 
Q
R
S 
T 
U
V
W
X
Y

 0.87 
 0.78 
 0.83 
 0.82 

0.74 
0.75 

 0.73 
 0.79 

 0.77 
0.56 

 0.67 
0.71 

 0.54 
 0.63 
 0.49 

0.62 
 0.61 
 0.65 

0.55 
0.55 

 0.55 
 0.50 
 0.41 
 0.29 
 0.27 

0.68 
0.62 
0.72 
0.70 
0.56 
0.49 
0.61 
0.61 
0.58 
0.25 
0.50 
0.58 
0.49 
0.56 
0.21 
0.30 
0.34 
0.60 
0.35 
0.35 
0.35 
0.34 
0.29 
0.28 
0.16 

0.19
0.16
0.11
0.12
0.18
0.26
0.12
0.18
0.19
0.31
0.17
0.13
0.05
0.07
0.28
0.32
0.27
0.05
0.20
0.20
0.20
0.16
0.12
0.01
0.11

Source: 

Note: 

Previously completed RCT studies. 

For each outcome, this table shows the school-level R2 achieved using the same set of students at 
baseline and follow-up and the school-level R2 achieved using disjoint samples of students at baseline 
and follow-up. The R2 values reported here are averages across 1,000 simulation replications. Each 
replication randomly sampled 50% of the students in each school, calculated the school-level baseline 
test score using only those students, calculated the school-level follow-up test score using the other 
50% of students, and then calculated the school-level R2. District dummies are not included as 
covariates. 
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school-level R2 between the proficiency measure and the study-collected pre-test is (1) of a plausible 
magnitude and (2) possibly due in large part to disjoint samples of students.  

In summary, we have shown that if the sample of baseline students is totally disjoint from the sample at 
follow-up, even if these students come from the same grade and cohort, and even if the baseline test is the 
same as the follow-up test, the result may be large reductions in the school-level R2. School-level 
proficiency measures obtained from public sources might represent different cohorts, different students, 
and different tests. Therefore, it is not surprising that using school-level proficiency measures as 
covariates rather than student-level achievement measures resulted in lower precision levels (that is, 
higher MDES values) for most of the outcomes we examined in Chapter 4.  

Alternative Cost Savings Strategy 

In Chapter 4, we found that, on average, the number of schools in a study would need to double in order 
to compensate for the loss in precision from using school-level proficiency measures instead of study-
collected baseline test data. An alternative strategy, at least for studies where the marginal cost of 
collecting another student’s pre-test is high, could be to only test a random subsample of students at 
baseline. To explore the potential benefits of this approach, we randomly drew subsamples of 20 percent, 
40 percent, 60 percent, and 80 percent of the full sample in each study and calculated the school-level R2 
when adjusting for the school-level mean pre-test based on these subsamples. We repeated this 1,000 
times and calculated the average school-level R2 across simulation replications. Table 5.2 shows results 
for all 25 cases.   

On average, the ratio of the school-level R2 associated with using a 20 percent subsample at baseline to 
the school-level R2 associated with the full sample is 0.80. The average ratios for the 40, 60, and 80 
percent subsamples are 0.91, 0.95, and 0.98, respectively. On average, the number of schools that a study 
would need to add (assuming that it starts with 40 schools) to compensate for the lower precision is 26, 
11, 5, and 2, respectively (not shown in table). Thus, when testing 20, 40, 60, or 80 percent subsamples of 
students at baseline, the number of schools in the study would need to increase by 65, 27.5, 12.5, or 5 
percent, respectively, in order to maintain the same MDES.  

The answer to whether collecting baseline test scores for a subsample of students is a cost-effective 
alternative to using publically available school proficiency data or collecting baseline test scores for all 
students will depend upon the various costs for each individual study. This option may be cost-effective 
for some studies, depending on the tradeoff between the marginal cost of testing another student at 
baseline and follow-up and the marginal cost of including another school in the study (which includes the 
cost of implementing the intervention). For example, in a study where the marginal cost of testing another 
student is high (perhaps because the testing is done individually by pulling each student out of class), but 
the marginal cost of including another school in the study is relatively low, it may be cost-effective to 
collect baseline test scores for an 80 percent subsample and increase the number of schools slightly. 
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Table 5.2 Sampling Distribution 
Student Subsamples At Baseline 
 

of the School-Level R2  2RB  When Taking 20%, 40%, 60%, and 80% 

Outcome 

2RB  Using Full  
Sample 

2RB  Using: 

20 Percent  
Subsample 

40 Percent 
Subsample 

 60 Percent  
Subsample 

80 Percent  
Subsample 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
O 
P 
Q 
R 
S 
T 
U 
V 
W 
X 
Y 

0.94 
0.91 
0.92 
0.91 
0.89 
0.89 
0.87 
0.90 
0.88 
0.81 
0.84 
0.86 
0.80 
0.84 
0.74 
0.77 
0.74 
0.83 
0.75 
0.74 
0.74 
0.72 
0.69 
0.63 
0.52 

0.80
0.74
0.85
0.83
0.73
0.69
0.77
0.75
0.73
0.52
0.68
0.74
0.62
0.71
0.49
0.55
0.52
0.74
0.60
0.63
0.64
0.61
0.55
0.44
0.44

 0.88
 0.84
 0.89
 0.88
 0.83
 0.81
 0.83
 0.84
 0.82
 0.67
 0.77
 0.82
 0.72
 0.78
 0.61
 0.66
 0.64
 0.79
 0.69
 0.70
 0.70
 0.67
 0.63
 0.54
 0.48

 0.91 
 0.88 
 0.91 
 0.90 
 0.86 
 0.85 
 0.85 
 0.88 
 0.85 
 0.74 
 0.81 
 0.84 
 0.77 
 0.81 
 0.68 
 0.71 
 0.69 
 0.81 
 0.72 
 0.72 
 0.72 
 0.70 
 0.66 
 0.58 
 0.50 

0.93
0.90
0.92
0.91
0.88
0.88
0.86
0.89
0.87
0.78
0.83
0.85
0.79
0.83
0.72
0.75
0.72
0.83
0.74
0.73
0.73
0.71
0.68
0.61
0.52

Average 0.81 0.65 0.74 0.77 0.79

Source: 

Note: 

RCT = rando

Previously completed RCT studies. 

For each outcome, this table shows the school-level R2 achieved using the full sample of students in 
each school, and the quantiles of the school-level R2 achieved using only a subsample of students from 
each school to calculate the school-level baseline test score. The full sample of students is always used 
to calculate the school-level follow-up test score. The last row shows the mean of the school-level R2 
achieved using student subsamples, averaged across all 25 outcomes. Based on 1,000 replications. 
Each replication randomly sampled X% of the students in each school (where X was 20, 40, 60 or 80), 
calculated the school-level baseline test score using only those students, and then calculated the 
school-level R2. District dummies are not included as covariates. 

mized controlled trial. 
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Chapter 6:  Attrition Bias 
In this chapter, we address the topic of attrition bias, which is a related but separate issue from this 
study’s main research topic. The main topic of concern is whether publically available school-level 
proficiency data can provide the same precision gains as a student-level baseline test score, when used as 
covariates in a regression of a follow-up test score. Even if school-level proficiency performed as well as 
student-level study-collected baseline tests, it might still be desirable to collect student-level baseline tests 
if they could be used to reduce non-response bias in the follow-up test data. Thus, we conducted the 
analyses in this chapter to assess whether non-response bias has been a problem in the five RCT studies 
examined in this report. If it has, then a student-level test may be useful in addressing this problem in 
future studies; if it hasn’t, then a student-level test may not be needed for this purpose. In Chapter 4, we 
present evidence that school-level proficiency variables do not perform as well as student-level study-
collected tests, for the purpose of improving the precision of impact estimates, which renders the question 
of whether student-level test scores should be collected in order to reduce attrition bias somewhat 
immaterial. However, empirical data about whether non-response bias exists (and to what extent it exists) 
in previous IES studies may be potentially useful for planning future studies and are therefore presented 
in this chapter. 

Attrition bias (or nonresponse bias) is a bias that arises when individuals or schools with missing data 
differ systematically from those without missing data, and when individuals or schools in the treatment 
group without missing data differ from those in the control group without missing data in terms of their 
pre-intervention characteristics. Attrition may happen at either the student or school level; attrition bias 
can come from either source. Student-level baseline test scores and school-level proficiency data can be 
used to diagnose and adjust for missing data at follow-up. A variety of techniques are available that can 
use either student-level baseline test scores or school-level proficiency data to partially mitigate attrition 
bias. Corrections for this bias include the maximum likelihood method of Griliches et al. (1978) and 
Heckman’s (1979) two-stage procedure. An alternative method is to impute missing data. Under this 
approach, multiple imputation as pioneered by Rubin (1987, 1996) is considered to be the “gold 
standard.” Puma et al. (2008) examine the performance of various methods for handling missing data in 
RCTs.  

When attrition occurs at the school level, either the school-level aggregate study-collected pre-test or 
school-level proficiency data could be used in analyses that diagnose or attempt to mitigate attrition bias. 
However, when attrition only occurs at the student level, school-level measures are of little value in 
adjusting for the within-school differences between students who are missing post-test scores and those 
who are not. Because there is no school-level attrition in the studies examined here, we cannot compare 
the performance of proficiency data to that of a study-collected pre-test in terms of diagnosing and 
reducing bias. Instead, the focus of our analyses in this chapter is to assess the extent to which different 
types of attrition bias exist in education RCTs. For these studies, we can examine the extent to which 
student-level baseline test scores have been needed to address bias due to missing follow-up test score 
data. If attrition bias is small, then the loss of student-level baseline covariates might be inconsequential. 
However, if attrition bias is a significant issue, then the loss of baseline covariates that could be used to 
mitigate that bias could be a serious issue.  

Types of Attrition Bias 

Missing outcome data can cause two types of bias: (1) biased impacts for the subgroup of individuals for 
whom outcome data are available, and (2) biased impacts for the original sample that was randomly 
assigned to treatment and control groups. The first type of bias arises when we are unable to establish a 
causal link between the intervention and the outcome. That is, the treatment impact cannot be solely 
attributed to the intervention if treatment and control students differ in other systematic ways. Therefore, 
if students with follow-up tests in the treatment group differ systematically from students with follow-up 
tests in the control group, treatment impacts could be biased for the subgroup of individuals for whom 
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outcome data are available. In this type of situation, including the baseline test score as a covariate in the 
regression will control for one way in which treatment group students may differ from control group 
students, thus reducing attrition bias (using the baseline test score to impute the missing values of the 
follow-up test, so long as that imputation is conducted separately for the treatment and control groups, is 
another approach).  

The second type of bias arises when students without follow-up data differ systematically from students 
with follow-up data and impacts vary between these two groups. In this type of situation, treatment 
impacts could be biased for the original sample that was randomly assigned to treatment and control 
groups. For example, if follow-up test scores are more likely to be missing for low achievers than for high 
achievers, and if the intervention has a different impact for low achievers than for high achievers, the 
estimated impacts of the intervention might be unbiased for the high achievers, but will not be unbiased 
for the full sample that was randomly assigned and included both low and high achievers. In this type of 
situation, the baseline test score can be used to impute the missing values of the follow-up test score, thus 
reducing attrition bias (so long as the imputation is conducted separately for the treatment and control 
groups).  

Data Analyses 

Although it is impossible to measure the true extent of attrition bias (since by definition we do not 
observe outcomes for students with missing outcome data), the high correlation between pre- and post-
tests in education creates a unique opportunity to develop a plausible estimate of the extent to which 
attrition bias may exist. We assessed the level of attrition bias in past education RCTs using study-
collected baseline test scores in several ways. To address the issue of estimating unbiased impacts for 
those individuals for whom outcome data are available, we first calculated the extent to which rates of 
missing data differed among treatment and control groups. We then examined whether students with 
follow-up tests in the treatment group differed systematically from students with follow-up tests in the 
control group in terms of their baseline test scores. To address the issue of estimating unbiased impacts 
for the original sample that was randomly assigned to treatment and control groups, we examined whether 
students without follow-up tests were systematically different from students with follow-up tests. 
Specifically, we calculated the extent to which baseline test scores of students without follow-up data 
differed from the baseline test scores of students with follow-up data.  

Results 

Tables 6.1 and 6.2 examine treatment-control differences in rates of missing data and baseline test scores. 
Table 6.1 shows the differences in attrition rates between treatment and control groups. For 22 out of 24 
outcomes, this difference is not statistically significant. Table 6.2 shows the differences in regression-
adjusted8 mean baseline test scores between treatment and control groups for students with follow-up 
tests. Because baseline test scores are highly correlated with follow-up test scores, these differences are a 
measure of bias resulting from differential response patterns between the treatment and control groups at 
follow-up. The absolute value of the difference between the treatment and control groups ranges from 
0.004 standard deviations to 0.12 standard deviations, with an average absolute deviation of 0.05 standard 
deviations (for comparison, many experimental evaluations in education are designed to detect effects of 
0.20 standard deviations). For only three outcomes the difference in means is statistically significant at 
the 5 percent significance level.  

                                                      
8 The numbers in this table are based on a regression of the baseline test score on treatment status, a dummy variable 
indicating nonresponse follow-up, and an interaction between those two variables. Adjusting baseline test scores in 
this manner enables us to compare treatment-control differences in baseline test scores for follow-up respondents 
that are due to nonresponse bias only, not differences that may occur by chance as part of randomization.  
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Together, Tables 6.1 and 6.2 provide evidence that, in the education RCTs examined in this study, the 
proportion of students lacking a follow-up test score typically does not differ between the treatment and 
control groups and the baseline test scores of students with follow-up test scores typically do not differ 
between the treatment and control groups, meaning that there is little need for a student-level baseline test 
score in order to adjust for non-response bias. An important caveat is that the studies examined here 
focused on students in grades K-9 and either on curriculum changes (math, reading, and technology) or 
teacher training/induction programs. These findings may not generalize to other ages or types of 
interventions. For example, they might not apply in an evaluation of charter high schools. 

Table 6.3 shows the differences in mean baseline test scores between students with and without follow-up 
tests. For all but three outcomes, we find that students without a follow-up test scored lower on the 
baseline test than students with a follow-up test by an average of 0.30 standard deviations. This difference 
is statistically significant (at the 5 percent significance level) for 18 outcomes. The results in Table 6.3 
provide evidence that, in education RCTs, the ability to estimate unbiased impacts for the original sample 
that was randomly assigned to treatment and control groups will be compromised by missing outcome 
data if impacts differ between high and low achievers. 
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Table 6.1:  Differences in Attrition Rates Between Treatment and Control Groups 
 

Outcome 
Treatment Group  

Attrition Rate 
Control Group  
Attrition Rate Difference P-Value 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
O 
P 
Q 
R 
S 
T 
U 
V 
W 
X 
Y 

0.146 
0.121 
0.130 
0.136 
0.099 
0.108 
0.137 
0.144 
0.117 
0.116 
0.102 
0.099 
0.196 
0.196 
0.120 
0.012 
0.000 
0.196 
0.000 
0.162 
0.193 
0.181 
0.081 
0.196 
0.174 

0.127 
0.100 
0.085 
0.099 
0.086 
0.124 
0.103 
0.121 
0.096 
0.144 
0.087 
0.087 
0.224 
0.224 
0.140 
0.010 
0.002 
0.224 
0.000 
0.157 
0.205 
0.182 
0.085 
0.224 
0.186 

0.018 
0.021 
0.046 
0.037 
0.013 

-0.016 
0.034 
0.023 
0.021 

-0.028 
0.015 
0.012 

-0.028 
-0.028 
-0.019 
0.002 

-0.002 
-0.028 
0.000 
0.005 

-0.011 
0.000 

-0.004 
-0.028 
-0.013 

0.824 
0.908 
0.984 
0.931 
0.232 
0.059 
0.905 
0.886 
0.916
0.033
0.181 
0.284 
0.242 
0.242 
0.096 
0.738 
0.007 
0.242 
N/A 
0.555 
0.389 
0.495 
0.779 
0.242 
0.370 

Source: 

RCT = rando

Previously completed RCT studies. 

mized controlled trial. 
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Table 6.2:  Differences in Baseline Test Scores Between Treatment and Control Groups for 
Students with Follow-Up Tests 
 

Outcome 

 Adjusteda Mean Baseline Test Score    

Control Group Treatment Group 
Difference in 

Means 
Difference in  

Effect Size Units P-Value 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
O 
P 
Q 
R 
S 
T 
U 
V 
W 
X 
Y 

45.308 
13.001 
18.538 
29.885 
38.212 

100.491 
11.405 
13.124 
19.106 

100.595 
42.689 
40.108 
31.057 
34.779 

100.469 
0.034 
0.022 

33.445 
31.767 
31.275 
84.866 
20.297 
59.095 
34.589 
32.805 

44.889 
12.797 
18.084 
29.128 
39.757 

100.532 
11.038 
13.129 
18.765 

100.561 
43.270 
41.546 
29.927 
34.191 

100.552 
-0.039 
-0.027 
32.671 
31.430 
31.046 
83.886 
19.902 
59.571 
34.145 
32.563 

-0.419 
-0.205 
-0.454 
-0.758 
1.546 
0.042 

-0.367 
0.005 

-0.341 
-0.034 
0.581 
1.439 

-1.130 
-0.588 
0.083 

-0.073 
-0.049 
-0.774 
-0.337 
-0.229
-0.980 
-0.396 
0.475 

-0.444 
-0.242 

-0.031 
-0.047 
-0.068 
-0.072 
0.073 
0.003 

-0.078 
0.001 

-0.054 
-0.001 
0.026 
0.071 

-0.064 
-0.029 
0.003 

-0.073 
-0.049 
-0.056 
-0.039 

 -0.056 
-0.080 
-0.064 
0.019 

-0.025 
-0.062 

0.773
0.563
0.665
0.648
0.055
0.918
0.577
0.992
0.605
0.932
0.488
0.076
0.482
0.824
0.844
0.284
0.438
0.676
0.581
0.719
0.555
0.520
0.685
0.792
0.627

 
Source: Previously completed RCT studies.  
 
aThe numbers in this table are based on a regression of the baseline test score on treatment status, a 
dummy variable indicating nonresponse follow-up, and an interaction between those two variables. 
Adjusting baseline test scores in this manner enables us to compare treatment-control differences in 
baseline test scores for follow-up respondents that are due to nonresponse bias only, not differences that 
may occur by chance as part of randomization. 
 
RCT = randomized controlled trial. 
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Table 6.3:  Differences in Baseline Test Scores Between Students With and Without Follow-Up 
Tests 
 

 

Outcome 

Mean of Baseline Test Score 

Students with  Students without  
Follow-up Scores Follow-up Scores 

Difference  
in Means 

Difference in Effect  
Size Units P-value 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
O 
P 
Q 
R 
S 
T 
U 
V 
W 
X 
Y 

45.448 
13.020 
18.550 
29.901 
38.269 

100.350 
11.409 
13.168 
19.159 

100.473 
42.728 
40.118 
30.905 
34.176 

100.343 
0.057 
0.042 

33.090 
31.411 
31.298 
84.920 
20.302 
59.156 
34.221 
32.820 

41.131 
11.953 
14.809 
24.810 
39.460 
96.153 
8.994 

12.092 
15.697 
98.075 
43.581 
43.157 
27.502 
30.043 
94.653 
-0.638 
-0.329 
29.399 
N/A 

28.961 
77.238 
17.456 
55.309 
31.419 
30.494 

4.317 
1.067 
3.741 
5.091 

-1.190 
4.196 
2.415 
1.077 
3.463 
2.399 

-0.853 
-3.040 
3.403 
4.132 
5.690 
0.695 
0.371 
3.691 

N/A 
2.337 
7.682 
2.845 
3.847 
2.802 
2.326 

0.346 
0.317 
0.581 
0.497 

-0.057 
0.319 
0.524 
0.252 
0.534 
0.187 

-0.039 
-0.144 
0.210 
0.228 
0.442 
0.699 
0.374 
0.313 
N/A 
0.280 
0.372 
0.366 
0.165 
0.168 
0.342 

0.000
0.000
0.000
0.000
0.543
0.000
0.000
0.001
0.000
0.091
0.678
0.119
0.011
0.005
0.000
0.000
0.231
0.002
N/A

0.004
0.000
0.000
0.265
0.041
0.000

Source: Previously completed RCT studies. 

RCT = randomized controlled trial. 
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Chapter 7: Conclusion 
The purpose of this study has been to assess whether publically available school proficiency data can be 
an acceptable alternative to collecting baseline test scores in order to increase the statistical precision of 
impacts in RCTs. We also examined the extent to which attrition bias is a problem that needs to be 
addressed by statistical adjustments that use baseline test scores.  

The results and conclusions presented here are based on school-level proficiency data from the State 
Education Data Center (SEDC) and student test score data from large, multi-district evaluations. With 
only one exception, all of these large-scale evaluations were conducted in elementary schools. Thus, the 
results may not be generalizable to studies involving middle- and high-schools. Furthermore, the results 
may not be generalizable to other publically-available data sources, such as school-level mean scores on 
state achievement tests available from school, district, or state websites. This study focused specifically 
on the SEDC data because it is a convenient and low-cost source for proficiency data on most US schools. 
This makes it a likely choice for researchers conducting large-scale, multi-district evaluations. 
 
With respect to precision, we find that, on average, adjusting for school-level proficiency does not 
increase statistical precision as well as study-collected baseline test scores. Across the cases we examined, 
the number of schools included in studies would have to nearly double in order to compensate for the loss 
in precision of using proficiency data instead of study-collected baseline test data. This finding is 
consistent with the finding in Schochet (2008b) that small differences in the school-level R2 can have 
substantial power implications, which in the context of that paper meant that it is better to accept the 
small bias associated with adjusting for a late pre-test than to accept the considerable power loss 
associated with a smaller R2. Nevertheless, in cases where it is not feasible to collect a baseline test, using 
school-level proficiency data is a low-cost way to improve precision. Also, adding school-level 
proficiency variables as covariates in addition to the study-collected baseline test score increased the 
school-level R2 by 0.05 in the data we examined, which was equivalent to increasing the number of 
schools in a study from 40 to 49.  

With respect to attrition bias, we found little evidence that student attrition biases the impacts calculated 
for the subgroup of students who have follow-up test scores. However, we do find that students with 
follow-up test scores tend to have higher baseline test scores. This means that the impact for the subgroup 
of students with follow-up test scores might be different from the impact for the full sample if impacts 
vary by prior achievement. If student-level baseline test scores are available, they can be used to impute 
missing outcomes, thereby mitigating this difference.  
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